direct product, metabelian, supersoluble, monomial, A-group
Aliases: C22×F7, D14⋊3C6, C7⋊C3⋊C23, C14⋊(C2×C6), D7⋊(C2×C6), C7⋊(C22×C6), (C2×C14)⋊4C6, (C22×D7)⋊3C3, (C2×C7⋊C3)⋊C22, (C22×C7⋊C3)⋊2C2, SmallGroup(168,47)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C7⋊C3 — F7 — C2×F7 — C22×F7 |
C7 — C22×F7 |
Generators and relations for C22×F7
G = < a,b,c,d | a2=b2=c7=d6=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c5 >
Subgroups: 226 in 64 conjugacy classes, 37 normal (8 characteristic)
C1, C2, C2, C3, C22, C22, C6, C7, C23, C2×C6, D7, C14, C7⋊C3, C22×C6, D14, C2×C14, F7, C2×C7⋊C3, C22×D7, C2×F7, C22×C7⋊C3, C22×F7
Quotients: C1, C2, C3, C22, C6, C23, C2×C6, C22×C6, F7, C2×F7, C22×F7
Character table of C22×F7
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 6N | 7 | 14A | 14B | 14C | |
size | 1 | 1 | 1 | 1 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | ζ3 | ζ32 | ζ6 | ζ6 | ζ65 | ζ3 | ζ32 | ζ3 | ζ65 | ζ6 | ζ32 | ζ3 | ζ32 | ζ6 | ζ65 | ζ65 | 1 | -1 | -1 | 1 | linear of order 6 |
ρ10 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ζ32 | ζ3 | ζ65 | ζ3 | ζ32 | ζ6 | ζ65 | ζ32 | ζ6 | ζ65 | ζ3 | ζ6 | ζ65 | ζ3 | ζ6 | ζ32 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ζ3 | ζ32 | ζ6 | ζ32 | ζ3 | ζ65 | ζ6 | ζ3 | ζ65 | ζ6 | ζ32 | ζ65 | ζ6 | ζ32 | ζ65 | ζ3 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ12 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | ζ32 | ζ3 | ζ65 | ζ65 | ζ32 | ζ32 | ζ3 | ζ6 | ζ32 | ζ3 | ζ65 | ζ6 | ζ65 | ζ3 | ζ6 | ζ6 | 1 | -1 | 1 | -1 | linear of order 6 |
ρ13 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | ζ3 | ζ32 | ζ6 | ζ32 | ζ65 | ζ65 | ζ6 | ζ65 | ζ3 | ζ32 | ζ6 | ζ3 | ζ32 | ζ6 | ζ65 | ζ3 | 1 | 1 | -1 | -1 | linear of order 6 |
ρ14 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ3 | ζ65 | ζ32 | ζ6 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ32 | ζ3 | ζ3 | ζ32 | ζ6 | 1 | -1 | 1 | -1 | linear of order 6 |
ρ15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ16 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | ζ3 | ζ32 | ζ6 | ζ6 | ζ3 | ζ3 | ζ32 | ζ65 | ζ3 | ζ32 | ζ6 | ζ65 | ζ6 | ζ32 | ζ65 | ζ65 | 1 | -1 | 1 | -1 | linear of order 6 |
ρ17 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | ζ32 | ζ3 | ζ65 | ζ3 | ζ6 | ζ6 | ζ65 | ζ6 | ζ32 | ζ3 | ζ65 | ζ32 | ζ3 | ζ65 | ζ6 | ζ32 | 1 | 1 | -1 | -1 | linear of order 6 |
ρ18 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ19 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | ζ32 | ζ3 | ζ65 | ζ65 | ζ6 | ζ32 | ζ3 | ζ32 | ζ6 | ζ65 | ζ3 | ζ32 | ζ3 | ζ65 | ζ6 | ζ6 | 1 | -1 | -1 | 1 | linear of order 6 |
ρ20 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | ζ32 | ζ6 | ζ65 | ζ65 | ζ6 | ζ3 | ζ3 | ζ32 | ζ32 | ζ65 | ζ6 | ζ6 | ζ3 | ζ65 | 1 | -1 | -1 | 1 | linear of order 6 |
ρ21 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | ζ3 | ζ65 | ζ6 | ζ6 | ζ65 | ζ32 | ζ32 | ζ3 | ζ3 | ζ6 | ζ65 | ζ65 | ζ32 | ζ6 | 1 | -1 | -1 | 1 | linear of order 6 |
ρ22 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ32 | ζ6 | ζ3 | ζ65 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ3 | ζ32 | ζ32 | ζ3 | ζ65 | 1 | -1 | 1 | -1 | linear of order 6 |
ρ23 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ6 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | ζ65 | ζ65 | ζ32 | ζ32 | 1 | 1 | -1 | -1 | linear of order 6 |
ρ24 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ65 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | ζ6 | ζ6 | ζ3 | ζ3 | 1 | 1 | -1 | -1 | linear of order 6 |
ρ25 | 6 | -6 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | orthogonal lifted from C2×F7 |
ρ26 | 6 | -6 | -6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | orthogonal lifted from C2×F7 |
ρ27 | 6 | 6 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from F7 |
ρ28 | 6 | 6 | -6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | orthogonal lifted from C2×F7 |
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)
(1 8)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 22)(2 25 3 28 5 27)(4 24 7 26 6 23)(8 15)(9 18 10 21 12 20)(11 17 14 19 13 16)
G:=sub<Sym(28)| (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,22)(2,25,3,28,5,27)(4,24,7,26,6,23)(8,15)(9,18,10,21,12,20)(11,17,14,19,13,16)>;
G:=Group( (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,22)(2,25,3,28,5,27)(4,24,7,26,6,23)(8,15)(9,18,10,21,12,20)(11,17,14,19,13,16) );
G=PermutationGroup([[(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28)], [(1,8),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,22),(2,25,3,28,5,27),(4,24,7,26,6,23),(8,15),(9,18,10,21,12,20),(11,17,14,19,13,16)]])
G:=TransitiveGroup(28,24);
C22×F7 is a maximal subgroup of
D14⋊C12
C22×F7 is a maximal quotient of D28⋊6C6 D4⋊2F7 Q8⋊3F7
Matrix representation of C22×F7 ►in GL7(𝔽43)
42 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 42 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 42 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 42 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 42 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 42 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 42 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 42 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 42 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 42 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 42 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 42 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 42 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 42 |
0 | 1 | 0 | 0 | 0 | 0 | 42 |
0 | 0 | 1 | 0 | 0 | 0 | 42 |
0 | 0 | 0 | 1 | 0 | 0 | 42 |
0 | 0 | 0 | 0 | 1 | 0 | 42 |
0 | 0 | 0 | 0 | 0 | 1 | 42 |
6 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 42 | 0 |
0 | 0 | 0 | 42 | 0 | 0 | 0 |
0 | 42 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 42 |
0 | 0 | 0 | 0 | 42 | 0 | 0 |
0 | 0 | 42 | 0 | 0 | 0 | 0 |
G:=sub<GL(7,GF(43))| [42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,42],[1,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,42],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,42,42,42,42,42,42],[6,0,0,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,0,0,42,0,0,42,0,0,0,0,0,0,0,0,0,42,0,0,42,0,0,0,0,0,0,0,0,0,42,0,0] >;
C22×F7 in GAP, Magma, Sage, TeX
C_2^2\times F_7
% in TeX
G:=Group("C2^2xF7");
// GroupNames label
G:=SmallGroup(168,47);
// by ID
G=gap.SmallGroup(168,47);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-7,3604,319]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^7=d^6=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^5>;
// generators/relations
Export